- 最後登錄
- 2009-11-19
- 在線時間
- 37 小時
- UID
- 691
- 閱讀權限
- 80
- 精華
- 0
- 帖子
- 393
- 日誌
- 0
- EXP
- 652 點
- 金幣
- 614 個
- 註冊時間
- 2008-4-17

- 帖子
- 393
- EXP
- 652 點
- 金幣
- 614 個
- 好友
- 0
- 註冊時間
- 2008-4-17
|
因為能量不能無中生有,所以粒子反粒子對中的一個參與者有正的能量,而另一個有負的能量。由於在正常情況下實粒子總是具有正能量,所以具有負能量的那一個粒子注定是短命的虛粒子。它必須找到它的伴侶並與之相湮滅。然而,一顆接近大質量物體的實粒子比它遠離此物體時能量更小,因為要花費能量抵抗物體的引力吸引才能將其推到遠處。正常情況下,這粒子的能量仍然是正的。但是黑洞裏的引力是如此之強,甚至在那兒一個實粒子的能量都會是負的。所以,如果存在黑洞,帶有負能量的虛粒子落到黑洞裏變成實粒子或實反粒子是可能的。這種情形下,它不再需要和它的伴侶相湮滅了,它被拋棄的伴侶也可以落到黑洞中去。啊,具有正能量的它也可以作為實粒子或實反粒子從黑洞的鄰近逃走。對於一個遠處的觀察者而言,這看起來就像粒子是從黑洞發射出來一樣。黑洞越小,負能粒子在變成實粒子之前必須走的距離越短,這樣黑洞發射率和表觀溫度也就越大。輻射出去的正能量會被落入黑洞的負能粒子流所平衡。按照愛因斯坦方程E=mc2(E是能量,m是質量,c為光速),能量和質量成正比。所以往黑洞去的負能量流減少它的質量。當黑洞損失質量時,它的事件視界面積變小,但是它發射出的輻射的熵過量地補償了黑洞的熵的減少,所以第二定律從未被違反過。還有,黑洞的質量越小,則其溫度越高。這樣當黑洞損失質量時,它的溫度和發射率增加,因而它的質量損失得更快。人們並不很清楚,當黑洞的質量最後變得極小時會發生什麼。但最合理的猜想是,它最終將會在一個巨大的、相當於幾百萬顆氫彈爆炸的發射爆中消失殆盡。一個具有幾倍太陽質量的黑洞只具有1000萬分之一度的絕對溫度。這比充滿宇宙的微波輻射的溫度(大約2.7K)要低得多,所以這種黑洞的輻射比它吸收的還要少。如果宇宙注定繼續永遠膨脹下去,微波輻射的溫度就會最終減小到比這黑洞的溫度還低,它就開始損失質量。但是即使那時候,它的溫度是如此之低,以至於要用100億億億億億億億億年(1後面跟66個0)才全部蒸發完。這比宇宙的年齡長得多了,宇宙的年齡大約只有100到200億年(1或2後面跟10個0)。另一方面,正如第六章提及的,在宇宙的極早期階段存在由於無規性引起的坍縮而形成的質量極小的太初黑洞。這樣的小黑洞會有高得多的溫度,並以大得多的速率發生輻射。具有10億噸初始質量的太初黑洞的壽命大體和宇宙的年齡相同。初始質量比這小的太初黑洞應該已蒸發完畢,但那些比這稍大的黑洞仍在輻射出X射線以及伽瑪射線。這些X射線和伽瑪射線像是光波,只是波長短得多。這樣的黑洞幾乎不配這黑的綽號:它們實際上是白熱的,正以大約1萬兆瓦的功率發射能量。只要我們能夠駕馭黑洞的功率,一個這樣的黑洞可以開動10個大型的發電站。然而,這是非常困難的:這黑洞的質量和一座山差不多,卻被壓縮成萬億之一英寸亦即比一個原子核的尺度還小!如果在地球表面上你有這樣的一個黑洞,就無法阻止它透過地面落到地球的中心。它會穿過地球而來回振動,直到最後停在地球的中心。所以僅有的放置黑洞並利用之發出能量的地方是繞著地球轉動的軌道,而僅有的將其放到這軌道上的辦法是,用在它之前的一個大質量的吸引力去拖它,這和在驢子前面放一根胡羅蔔相當像。至少在最近的將來,這個設想並不現實。但是,即使我們不能駕馭這些太初黑洞的輻射,我們觀測到它們的機遇又如何呢?我們可以去尋找在太初黑洞壽命的大部分時間裏發出的伽瑪射線輻射。雖然它們在很遠以外的地方,從大部分黑洞來的輻射非常弱,但是從所有它們來的總的輻射是可以檢測得到的。我們確實觀察到了這樣的一個伽瑪射線背景:圖7.5表示觀察到的強度隨頻率的變化。然而,這個背景可以是也可能是除了太初黑洞之外的過程產生的。圖7.5中點線指出,如果在每立方光年平均有300個太初黑洞,它們所發射的伽瑪射線的強度應如何地隨頻率而變化。所以可以說,伽瑪射線背景的觀測並沒給太初黑洞提供任何正的證據。但它們確實告訴我們,在宇宙中每立方光年不可能平均有300個以上的太初黑洞。這個極限表明,太初黑洞最多只能構成宇宙中百萬分之一的物質。由於太初黑洞是如此之稀罕,看來不太可能存在一個近到我們可以將其當作一個單獨的伽瑪射線源來觀察。但是由於引力會將太初黑洞往任何物質處拉近,所以在星系裏面和附近它們應該會更稠密得多。雖然伽瑪射線背景告訴我們,平均每立方光年不可能有多於300個太初黑洞,但它並沒有告訴我們,太初黑洞在我們星系中的密度。譬如講,如果它們的密度高100萬倍,則離開我們最近的黑洞可能大約在10億公里遠,或者大約是已知的最遠的行星---冥王星那麼遠。在這個距離上去探測黑洞恒定的輻射,即使其功率為1萬兆瓦,仍是非常困難的。人們必須在合理的時間間隔裏,譬如一星期,從同方向檢測到幾個伽瑪射線量子,以便觀測到一個太初黑洞。否則,它們僅可能是背景的一部份。因為伽瑪射線有非常高的頻率,從普郎克量子原理得知,每一伽瑪射線量子具有非常高的能量,這樣甚至發射一萬兆瓦都不需要許多量子。而要觀測到從冥王星這麼遠來的如此少的粒子,需要一個比任何迄今已造成的更大的伽瑪射線探測器。況且,由於伽瑪射線不能穿透大氣層,此探測器必須放到外空間。
當然,如果一顆像冥王星這麼近的黑洞已達到它生命的末期並要爆炸開來,去檢測其最後爆炸的輻射是容易的。但是,如果一個黑洞已經輻射了100--20O億年,不在過去或將來的幾百萬年裏,而是在未來的若干年裏到達它生命的終結的可能性真是微不足道!所以在你的研究津貼用光之前,為了有一合理的機會看到爆炸,必須找到在大約1光年距離之內檢測任何爆炸的方法。事實上,原先建造來監督違反禁止核子試驗條約的衛星檢測到了伽瑪射線爆。每個月似乎發生16次左右,並且大體均勻地分佈在天空的所有方向上。這表明它們起源於太陽系之外,否則的話,我們可以預料它們要集中於行星軌道面上。這種均勻分佈還表明,這些伽瑪射線源要麼處於銀河系中離我們相當近的地方,要麼在它的週邊的宇宙學距離之處,否則它們還會集中於星系的平面之上。在後者的情形下,產生伽瑪射線爆所需的能量實在太大,微小的黑洞根本提供不起。但是如果這些源以星系的尺度衡量和我們鄰近,那就可能是正在爆發的黑洞。我非常希望這種情形成真,但是我必須承認,還可以用其他方式來解釋伽瑪射線爆,例如中子星的碰撞。未來幾年的觀測,尤其是像LIGO這樣的引力波探測器,應該能使我們發現伽瑪射線爆的起源。
即使對太初黑洞的探索證明是否定的,並且看來可能會是這樣,仍然給了我們關於極早期宇宙的重要信息。如果早期宇宙曾經是紊亂或無規的,或者物質的壓力很低,可以預料到會產生比我們對伽瑪射線背景所作的觀測所設下的極限更多的太初黑洞。只有當早期宇宙是非常光滑和均勻的,並有很高的壓力,人們才能解釋為何沒有觀測到太初黑洞。
黑洞輻射的思想是第一個這樣的例子,它以基本的方式依賴於本世紀兩個偉大理論即廣義相對論和量子力學所作的預言。因為它推翻了已有的觀點,所以一開始就引起了許多反對:“黑洞怎麼會輻射東西出來?”當我在牛津附近的盧瑟福-阿普頓實驗室的一次會議上,第一次宣佈我的計算結果時,受到了普遍質疑。我講演結束後,會議主席、倫敦國王學院的約翰.泰勒宣佈這一切都是毫無意義的。他甚至為此還寫了一篇論文。然而,最終包括約翰.泰勒在內的大部分人都得出結論:如果我們關於廣義相對論和量子力學的其他觀念是正確的,黑洞必須像熱體那樣輻射。這樣,即使我們還不能找到一個太初黑洞,大家相當普遍地同意,如果找到的話,它必須正在發射出大量的伽瑪射線和X射線。
|
-
總評分: EXP + 1
查看全部評分
|